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SUMMARY

We compare the performance of different pressure correction algorithms used as basic solvers in a multigrid
method for the solution of the incompressible Navier±Stokes equations on non-staggered grids. Numerical tests
were performed on several cases of lid-driven cavity ¯ow using four different pressure correction schemes,
including the traditional SIMPLE and SIMPLEC methods as well as novel variants, and varying combinations of
underrelaxation parameters. The results show that three of the four algorithms tested are robust smoothers for the
multigrid solver and that one of the new methods converges fastest in most of the tests. # 1997 by John Wiley &
Sons, Ltd.
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1. INTRODUCTION

What are the relative merits of different pressure correction methods used as basic solvers (or

smoothers) in multigrid methods for incompressible ¯ow? Multigrid methods have been used to

accelerate the convergence of pressure correction methods like SIMPLE in both staggered1,2 and non-

staggered3±6 discretizations. A comparison of different smoothers, including some pressure correction

methods, on a staggered grid was given in Reference 7. We performed a systematic comparison of the

convergence of multigrid iterations on a non-staggered grid. Four different pressure correction

methods were tested, both well-established methods like SIMPLE8 and SIMPLEC,9 and novel

variants. The tests comprised different cases of lid-driven cavity ¯ow. Preliminary results of this

study were presented in Reference 10.

All this said, what is the purpose of doing such a study for pressure correction methods when coupled

smoothers appear to give much better multigrid performance? The answer is versatility: pressure

correction methods have been adapted to and used in a wide range of problems of practical interest. We

believe that these methods will continue to be the workhorse of applied CFD for still some time to

come, a view that is reinforced by the recent publication of a book11 on the methodology.

CCC 0271±2091/97/040393±13$17.50 Received July 1996

# 1997 by John Wiley & Sons, Ltd. Revised October 1996

* Correspondence to: T. Gjesdal, Department of Process and Safety, Christian Michelsen Research AS, PO Box 3, N-5036
Fantoft, Bergen, Norway.
** Current address: HAV Kurs- og Kompetensesenter, LandaÊsveien 30, N-5030 LandaÊs, Norway.

Contract grant sponsor: Research Council of Norway; Contract grant number: 100556=410;
Contract grant number: STP-30074.



The organization of the paper is as follows. In Section 2 we give the cell-centred co-located

discretization. In Section 3 we describe the numerical method. We give a uni®ed de®nition of the

pressure correction methods we employ and discuss various aspects of the non-linear multigrid

method. In Section 4 we present the results of the calculations. The majority of the results we present

is from two-dimensional simulations with the standard methods. We also present three-dimensional

results and discuss some algorithmic variants.

2. GOVERNING EQUATIONS AND DISCRETIZATION

The ¯ow of Newtonian ¯uids is governed by the Navier±Stokes equations, which express

conservation of mass and momentum. In the case of steady, incompressible, laminar and isothermal

¯ow these are

H ? u � 0; �1�
H ? �ruul� � ÿ

@p

@xl

� mH2ul � fl; �2�

where r is the density, u � �u1; u2; u3� � �u; v;w� represents the velocity ®eld, p is the pressure and m
is the dynamic viscosity of the ¯uid. External forces and other source terms are denoted by f.

These equations are discretized on a structured, non-orthogonal grid with primary variablesÐ

Cartesian velocity components and pressureÐstored in the cell centres. We use a ®nite volume

discretization, integrating Equations (1) and (2) over a general non-orthogonal control volume. If we

integrate the continuity equation (1) over a cell and use the Gauss divergence theorem, we getP
n

Dn�An ? u� � 0; �3�

where A and n are the area and normal vector of the cell face respectively. D denotes the difference

between cell faces, e.g. D1f � fe ÿ fw. In the same way we can write the ul-momentum equation asP
n

Dn�An ? �ruul ÿ mGul�� � ÿV �Glp�P � Vf P
l ; �4�

where V is the volume of the control volume and G is the discretized gradient operator. The advective

term ue
l is discretized either by a ®rst-order upwind difference or by higher-order differencing. The

high-order differencing is implemented by defect correction to the ®rst-order scheme. The defect

correction approach improves the stability of the iterations and simpli®es the implementation of

limiter functions to avoid spurious oscillations in the computed solution.

Because the grid is non-orthogonal, the derivatives that occur in the viscous and pressure terms

must be evaluated in the transformed curvilinear co-ordinate system. The evaluation of the gradient

of ul in the diffusive term will in general involve all the neighbouring cells. If the grid is orthogonal,

the viscous term will, however, only contain contributions from the main co-ordinate directions. We

therefore split the viscous ¯ux into a primary ¯ux, containing the orthogonal terms, that we treat

implicitly and a secondary (non-orthogonal) ¯ux that we treat explicitly.

In the pressure term the differentiation with respect to the xn-direction is performed by 2d-centred

differences. This will lead to a loss of ellipticity on the grid scale12 and it is well known that

checkerboard oscillations in pressure can occur. To counter this, we use a pressure-weighted

interpolation of the cell face velocities in the discretized continuity equation (3). The idea goes back

to Rhie and Chow.13 This interpolation acts as fourth-order stabilizing dispersive term that eliminates

the spurious pressure modes.
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3. MULTRIGRID METHOD

Unlike other iterative methods, multigrid algorithms offer convergence rates that are independent of

the number of grid points. This is achieved by constructing a method that consists of two

complementary components. High-frequency errors are ef®ciently reduced by a smoother, while a

coarse grid correction employing a hierarchy of coarser grids eliminates slow error components.

Pressure correction methods (such as SIMPLE) have been used as single-grid solvers for

incompressible ¯uid ¯ow. These methods show typical smoothing behaviour: convergence is

reasonably fast for the ®rst few iterations but then slows down as long-wavelength components

dominate the error.

To construct the sequence of grids on the coarse levels, we use cell-centred coarsening, i.e. we

lump two-and-two ®ne grid cells in each direction such that a two-dimensional coarse grid cell

comprises four ®ne grid cells. The coarse grid equation in the non-linear FAS multigrid method14 can

be written in symbolic form as

Lc� �f� � Lc� ~f� � ~r; �5�

where f is the vector of dependent variables, a tilde denotes values restricted from the ®ne grid,
~f � Rf, and an overbar, �f, denotes the solution to the coarse grid problem. The ®ne grid residual is

de®ned by r � bÿ Lf �f�. Fine and coarse grid operators Lf and Lc are given by applying the

discretization (3), (4) on the ®ne and coarse grids respectively. The correction term that will be

prelongated back to the ®ne grid is then given by e � �fÿ ~f.

Because the equations are linear in pressure, several previous authors3±5 have treated pressure in a

linear fashion and formulated coarse grid equations directly in terms of a correction for the pressure.

We have chosen to follow Johansson and Davidson6 and apply the non-linear strategy to all terms in

the equations.

We did not use nested iteration (full multigrid). This method can give a signi®cant speed-up to the

multigrid convergence, but at the cost of increased complexity both in the multigrid cycling and in

the need to keep a set of more accurate interpolation operators for the nested iteration phase of the

iterations. We therefore chose to restrict the scope of this study to investigate the performance of the

different pressure correction methods in the basic multigrid algorithm.

3.1. Pressure correction method

This subsection describes the smoother or basic solver used in the multigrid method. We use a

pressure correction method, i.e. the momentum and continuity equations are solved sequentially

instead of in a coupled manner. Although these methods are similar to the fractional step or projection

methods that were introduced by Chorin15 and Temam16 in the late 1960s, the proto-pressure

correction algorithm is SIMPLE introduced by Patankar and Spalding8 and described thoroughly in

Reference 17. An iteration of the pressure correction method starts by solving the discretized

momentum equations (4) with the best available estimate for the pressure, p*. The resulting velocity

®eld u* will in general not be mass-conserving, and to obtain a velocity ®eld that satis®es the

continuity equation (1), we introduce corrections to the velocities and pressure:

u � u*� u0; �6�
p � p*� p0: �7�
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To de®ne different pressure correction methods, we prescribe the relation between the velocity

corrections and the pressure corrections. The methods we consider can all be described by the

expression

u0Pl �
P
n

dP
nd

n
2p0 ÿ trl*

P

aP ÿ s
P
nb

anb
; �8�

where dn
2 is a 2d-centred difference in the xn-direction, aP; anb and dP

n are coef®cients that we take

from the linearized, discrete momentum equation and rl* denotes the momentum residual. The

algorithmic parameters s and t can take values of zero and unity. Different choices of these two

parameters correspond to different simplifying assumptions made in the derivation of the relation

between velocity corrections and pressure corrections. In all the methods we only consider pressure

contributions to the velocity corrections such that terms in the form
P

anbu0nb are neglected. We have

the following four methods.

1. s � 0; t � 0 give the standard SIMPLE algorithm of Patankar and Spalding.8 Here it is

assumed that the intermediate momentum equations are solved exactly.

2. s � 1; t � 0 give the SIMPLEC method introduced by Van Doormal and Raithby.9 The

difference from SIMPLE is that the term
P

anbu0P is subtracted from both sides of the

discretized momentum equations. In this way the neglected contributions from the

neighbouring cells are reduced, and the authors claim that this eliminates the need for

underrelaxation of the pressure.

3. s � 0; t � 1 give a method that was proposed by Shaw and Sivaloganathan.18 This method

takes into account that the momentum equations are only solved approximately and uses the

residual of the incompletely converged equations in the expression for the velocity corrections.

This method has a better theoretical smoothing rate (i.e. the high-frequency error reduction that

is important in multigrid) but has to our knowledge never been tested. We will call this variant

SIMPLESSE.

4. s � 1; t � 1 give a combination of SIMPLEC and the method proposed in Reference 18

(SIMPLESSEC).

To obtain an equation for the pressure corrections, we interpolate the corrected velocity given by

equations (6) and (8) to the cell faces with the pressure-weighted interpolation and insert it into the

discretized continuity equation (3). The pressure correction equation will in general have

contributions from a full stencil (nine points in 2D, 19 points in 3D). Since the equation describes

a correction that vanishes in the ®nal, converged solution, we neglect the terms that correspond to

cross-derivatives.

3.2. Intergrid transfer operators

In this subsection we describe the intergrid transfer operators, prolongation and restriction, that we

use to transmit information between the different grid levels. Prolongation is based on an

interpolation rule from the coarse to the ®ne grid points. The ®ne-to-coarse restriction can be de®ned

by the average

~ui � �Ru�i �
P

j

R�i; j�u2i�j; �9�

where i; j represent multi-indices and the non-zero averaging weights are known as the stencil of the

restriction. Restriction can also be de®ned as the adjoint of a prolongation operator and it is
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convenient to represent both transfer operators in terms of restriction stencils even though we might

use different interpolation rules for the two. We refer to Wesseling20 for a detailed description of the

stencil notation.

In order to ensure multigrid convergence, i.e. for the rate of convergence to be independent of the

grid size, the restriction and prolongation must satisfy the accuracy requirement

mR � mP > M ; �10�
where mR is the order of the restriction, mP is the order of the prolongation and M is the order of the

differential operator.21±23 An interpolation rule is of order m if it interpolates polynomials of order

mÿ 1 exactly. For the Navier±Stokes equations we have M � 2 and we will consider transfers based

on piecewise constant interpolation �m � 1� and on linear interpolation �m � 2�. The discretization

given by equations (3) and (4) is valid for a non-orthogonal, structured grid. In order to reduce the

complexity of the multigrid method, we keep the grid information from the physical space in the

discrete operator only and we perform the intergrid transfer operations on equidistant grids on the

transformed computational space. The stencil for two-dimensional restriction or prolongation based

on piecewise constant interpolation is given by

R1 � 1 1

1 1

� �
�11�

and in the case of bilinear interpolation we have

R2 � 1

16

1 3 3 1

3 9 9 3

3 9 9 3

1 3 3 1

2664
3775 �12�

for cells away from the boundary. In boundary cells the bilinear interpolation stencil must be

modi®ed. For the velocities we assume a zero value at the boundary (Dirichlet condition), while for

the pressure we assume a zero normal derivative at the boundary (Neumann condition).

3.3. Defect correction for higher accuracy

If we consider the discretized momentum equation (4), the balance of advective ¯uxes in the x1-

direction can be written as

Feue
l ÿ Fwuw

l ;

where F � An ? ru is the mass ¯ow. The crucial point in the discretization of the advection term is

how to choose the ul-values at the cell faces.

The ®rst-order upstream extrapolation is the only linear scheme that is positive, but it is

unacceptably diffusive and we consider higher-order schemes. Let us assume that the advecting ¯ux

F is positive. In the transformed computational space, where the grid spacing is uniform, we de®ne a

family of higher-order scheme (the k-schemes) by the ®rst-order upwind value plus a correction term:

ue
l � uP

l �
1� k

4
�uE

l ÿ uP
l � �

1ÿ k
4
�uP

l ÿ uW
l �; ÿ14k4 1: �13�

In this family we ®nd both the linear upwind extrapolation (k � ÿ1) and the central scheme (k � 1).

All the members of this family are second-order-accurate in space and the k � 1
3

scheme is third-

order-accurate for steady advection.
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The defect correction iteration for the advective terms can be de®ned by

ue
l � �uP

l ��new� � �1
2
C�se��uP

l ÿ uW
l ���old�; �14�

where we have rewritten the scheme in terms of a limiter function C to maintain positivity and the

slope ratio se � �uE
l ÿ uP

l �=�uP
l ÿ uW

l � acts as a trigger to detect situations in which wiggles can occur.

This explicit treatment of the correction term shows the defect correction method is essentially a

modi®cation of the source terms of the ®rst-order method. We use a limiter proposed by Koren24,25

that is consistent with the k � 1
3

scheme:

C�s� � maxf0;min�2s;min�1
3
� 2

3
s; 2��g: �15�

This limiter maximizes the s-interval where the limiter is switched off. To implement the defect

correction iterations, we apply the update (14) in the smoothing step (i.e. for each pressure correction

iteration at all levels) as suggested by Heinrichs.26 We found this approach to be more ef®cient than

either using defect correction as an outer iteration, or inside the multigrid cycle by calculating the

residuals based on the high-order discretization.

3.4. Residual overweighting of characteristic error components

In advection±diffusion (¯ow) problems with a strong characteristic direction, some smooth error

components cannot be well approximated on the coarse grid. Such poor coarse grid representation

can cause a slow-down of the convergence of the multigrid iterations. This situation was analysed by

Brandt and Yavneh,27 who found that the rate of convergence can be improved by overweighting the

residuals transferred to the coarse grid. The coarse grid FAS equation (5) can then be written as

Lc� �f� � Lc� ~f� � Z~r; �16�
where Z is the overweighting factor. The optimal value for Z was found to be Z � 4

3
for two-level

cycles and Z � p2 for multilevel W-cycles.

It is important to take into account that the analysis was performed for the limiting case Re!1.

Furthermore, because of the overweighting, smooth error components that are well represented on the

coarse grid will be overcorrected. To avoid the convergence deteriorating because of this

overcorrection, we only apply residual overweighting (ROW) in regions with strong advection.

That is, if the local Reynolds number is greater than some threshold

Reh �
j ~ujl
n

5Recrit �17�

in a coarse cell, then we set Z > 1, otherwise we set Z � 1.

4. NUMERICAL RESULTS

We have computed several cases of lid-driven cavity ¯ow at different Reynolds numbers using V-

cycles with two pressure correction interations for both pre-smoothing and post-smoothing, i.e. a

V(2,2) cycle. On the coarsest level we used ®ve iterations. In each pressure correction iteration we

employ one alternating line Gauss±Seidel sweep for each of the momentum equations and ®ve

sweeps for the pressure correction equation. Unless otherwise stated, the restriction operator is based

on piecewise constant interpolation given by the stencil (11). Bilinear interpolation (12) is then used

for the coarse-to-®ne prolongation.

Iterations were carried out until the residual norm was reduced by a factor e � 10ÿ3. For the

calculations with the ®rst-order upwind discretization this is suf®cient to obtain a converged solution.
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For the more accurate defect correction iterations the solution is not fully converged, but the

difference from the converged solution is so small that it is negligible. To compare the performance

of the various pressure correction methods, we consider the average residual reduction factor after n

iterations given by

l � krn
totk
kr0

totk
� �1=n

; �18�

where the residual norm krtotk is the L2-norm of the combined mass and momentum residuals. We

take a work unit to be the cost of performing one iteration with the pressure correction iteration on the

®ne grid. Because the smoother is relatively expensive, we can neglect the cost of the grid transfer

operators. We also neglect the difference in cost between the different pressure correction methods

given by Equation (8). The cost of a V(2,2) cycle is thus 4� 2d=�2d ÿ 1� work units, where d is the

number of space dimensions.

4.1. Two-dimensional lid-driven cavity

The ®rst set of test cases comprises shear-driven ¯ow at different Reynolds numbers in square,

rectangular and skew cavities. In all these tests we used a 646 64 ®ne grid and four levels in the

multigrid iterations, such that the coarsest grid had 86 8 cells. We compared the convergence of the

four pressure correction methods with varying relaxation parameters. The test matrix for the entire

exercise is given in Table I. As expected, we found that underrelaxation of the momentum equations

is crucial to obtain convergence. For single-grid iterations with the SIMPLE method the optimal

combination of relaxation parameters is around 0�7±0�8 for velocity and 0�2±0�3 for pressure.28 The

results show that this also seems to be the case for the multigrid iterations. Note also that, in

accordance with Reference 9, we obtain the best convergence for the SIMPLEC method without

underrelaxation of the pressure.

The converged solution for the square cavity is in good agreement with the benchmark results by

Ghia et al.,29 as we can see from the computed centreline velocities for Re � 1000 shown in Figure 1.

We performed the calculations with a rectangular and a skew cavity to evaluate the performance of

the method for grids with aspect ratios different from unity and for non-orthogonal grids. The

rectangular cavity had a 4:1 aspect ratio and the Reynolds numbers were calculated based on the

cavity height. In the skew cavity the grid lines intersect at an angle of 60�.
We summarize the results in Table II±IV. The tables give, for each Reynolds number and

smoother, an optimal combination of relaxation factors and the convergence factors for the ®rst-

order, defect correction and ROW calculations. The optimal relaxation factors were chosen as the

combination that gave the fastest convergence. In a few cases the optimal combination was different

for the ®rst-order and the higher-order discretizations. In these cases we give priority to the more

accurate defect correction calculations. The performance of the methods is, by and large, comparable

Table I. Test matrix for two-dimensional calculations

Geometry Re Smoother Relax(u) Relax(p)

Square 100 SIMPLE 0�25 0�25 First-order upwind
Rectangular 400 SIMPLEC 0�50 0�50 k � 1

3
scheme

Skew 1000 SIMPLESSE 0�75 0�75 k � 1
3

with ROW
SIMPLESSEC 1�00 1�00

Total: 36 36 46 46 46 3� 1728 combinations.
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for each test case. At the higher Reynolds numbers the convergence of the iterations with defect

corrections deteriorates compared with the ®rst-order discretizations. Because of the trigger (17),

residual overweighting is never applied at the lower Reynolds numbers and these calculations are

therefore unaffected by ROW. At Re� 1000 the ef®ciency (measured as ÿ1= log l) can improve by

10%±20%. At even higher Re the impact is, as expected, greater and for Re� 5000 the speed-up is

about 30%.

The convergence rate in the calculations of the square cavity with SIMPLE and the ®rst-order

upwind discretization can be compared with the theoretical analysis of Shaw and Sivaloganathan.18,19

We obtain convergence factors that are higher than what we expect from the analysis. We do not

know the reasons for this discrepancy. The analysis is, however, based on a staggered grid, and the

Figure 1. Square cavity. Calculated vertical and horizontal centreline pro®les compared with benchmark results of Ghia et al.29
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co-located grid we use changes the ellipticity of the discrete system.12 It is possible that this affects

convergence and can explain the difference.

The results for the rectangular cavity are comparable with the square cavity case, especially at the

lower Reynolds numbers. Convergence deteriorates markedly for the skew cavity at high Reynolds

numbers. This is probably caused by the neglect of terms corresponding to the cross-derivatives in the

pressure correction equation.

The SIMPLE and SIMPLESSE methods show the most consistent results. For these methods the

optimal combination of relaxation parameters (0�75, 0�25) gave the fastest convergence in all but one

of the cases. We note that the modi®cations proposed by Shaw and Sivaloganathan18 do indeed give

slightly better convergence than SIMPLE as their analysis suggests. The `C' variants can give better

convergence in some cases, but the optimal choice of relaxation parameters seems to be problem-

dependent, especially for the SIMPLESSEC method. We also note that when we apply residual

Table II. Square cavity. Optimal relaxation parameters and convergence factors. First-
order upwind differencing, defect corrections with k � 1

3
scheme and defect

corrections accelerated by residual overweighting with Z � 4
3

and Recrit � 300

Re Algorithm Relax(u, p) Upwind DC ROW

100 SIMPLE (0�75, 0�25) 0�166 0�167
SIMPLEC (0�75, 1�00) 0�160 0�160
SIMPLESSE (0�75, 0�25) 0�161 0�161
SIMPLESSEC (0�75, 0�50) 0�137 0�137

400 SIMPLE (0�75, 0�25) 0�341 0�408
SIMPLEC (0�75, 1�00) 0�343 0�412
SIMPLESSE (0�75, 0�25) 0�292 0�354
SIMPLESSEC (0�75, 0�50) 0�265 0�306

1000 SIMPLE (0�75, 0�25) 0�406 0�524 0�463
SIMPLEC (0�75, 1�00) 0�408 0�525 0�458
SIMPLESSE (0�75, 0�25) 0�360 0�462 0�457
SIMPLESSEC (0�50, 0�75) 0�393 0�495 0�629

Table III. Rectangular cavity. Optimal relaxation parameters and convergence factors.
First-order upwind differencing, defect corrections with k � 1

3
scheme and defect

corrections accelerated by residual overweighting with Z � 4
3

and Recrit � 300

Re Algorithm Relax(u, p) Upwind DC ROW

100 SIMPLE (0�75, 0�25) 0�159 0�171
SIMPLEC (0�75, 1�00) 0�159 0�171
SIMPLESSE (0�75, 0�25) 0�147 0�153
SIMPLESSEC (0�75, 0�50) 0�088 0�093

400 SIMPLE (0�75, 0�25) 0�312 0�416
SIMPLEC (0�75, 1�00) 0�314 0�416
SIMPLESSE (0�75, 0�25) 0�277 0�369
SIMPLESSEC (0�50, 0�50) 0�414 0�499

1000 SIMPLE (0�75, 0�25) 0�439 0�695 0�663
SIMPLEC (0�75, 1�00) 0�441 0�680 0�644
SIMPLESSE (0�75, 0�25) 0�381 0�695 0�677
SIMPLESSEC (0�50, 0�50) 0�526 0�692 0�663
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overweighting in combination with the SIMPLESSEC smoother, the convergence actually

deteriorates in some cases.

For the residual overweighting we determined the trigger value Recrit by preliminary experiments.

Unfortunately, this parameter appears to be problem-dependent as we were not able to ®nd a value

that performs well in all cases. This severely restricts the robustness and applicability of the method.

ROW is therefore not used in the remainder of this study.

4.2. In¯uence of grid transfer operators

In the examples above and in previous work by other authors,3±6 prolongation was based on

bilinear interpolation, while restriction was based on piecewise constant interpolation. This is a

natural choice, especially in the cases where pressure was treated in a linear fashion as in most of

those references. In this subsection we will investigate the effect of using different grid transfer

operators. Because the transfer operators have to satisfy the accuracy requirement (10), either the

restriction or the prolongation must be based on bilinear interpolation. We performed calculations

with SIMPLE for the square cavity. Representative results for Re� 1000 are given in Figure 2. There

is no bene®t in swapping the order of the operators or in using higher-order interpolation in both

transfers.

4.3. Three-dimensional lid-driven cavity

We have also calculated the ¯ow in a three-dimensional cubic cavity. Lid-driven cavity ¯ow is

essentially two-dimensional for Re < 500 and unstable spanwise modes occur at fairly low Reynolds

numbers. This means that only a narrow window of Reynolds numbers provides a test case with

steady ¯ow that displays some three-dimensionality. Ramanan and Homsy30 found that the ®rst

unstable mode with a wavelength comparable with the cavity dimension appears at Re � 730.

We performed single-grid and multigrid iterations on two grids with 32 and 48 cells in each

direction. The Reynolds number in the simulations (Re� 700) was slightly below the critical value

for three-dimensional unstable modes and we used the SIMPLESSE smoother with defect

corrections. We did not use residual overweighting because of its lack of robustness discussed

above. The convergence histories are shown in Figure 3. Note that the multigrid method performs

Table IV. Skew cavity. Optimal relaxation parameters and convergence factors. First-
order upwind differencing, defect corrections with k � 1

3
scheme and defect

corrections accelerated by residual overweighting with Z � 4
3

and Recrit � 100

Re Algorithm Relax(u, p) Upwind DC ROW

100 SIMPLE (0�50, 0�50) 0�200 0�201
SIMPLEC (0�50, 1�00) 0�200 0�201
SIMPLESSE (0�75, 0�25) 0�231 0�232
SIMPLESSEC (0�75, 0�75) 0�165 0�164

400 SIMPLE (0�75, 0�25) 0�350 0�355
SIMPLEC (0�75, 1�00) 0�344 0�349
SIMPLESSE (0�50, 0�25) 0�293 0�296
SIMPLESSEC (0�75, 0�75) 0�245 0�279

1000 SIMPLE (0�75, 0�25) 0�627 0�816 0�792
SIMPLEC (0�75, 1�00) 0�645 0�819 0�793
SIMPLESSE (0�75, 0�25) 0�604 0�781 0�763
SIMPLESSEC (0�50, 0�50) 0�585 0�800 0�943
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equally well in the two cases and that the convergence of the single-grid iterations deteriorates with

grid re®nement, as expected. If we take into account the complexity of the multigrid cycleÐthat one

V (2, 2) cycle corresponds to 16=3 work units (single-grid iterations) in 2D and to 32=7 work units in

3DÐwe can calculate the multigrid speed-up factors presented in Table V. It appears that a 50%

increase in the number of cells in each direction leads to almost a doubling of the speed-up. The

relative cost of a coarse grid correction is smaller in 3D than in 2D; this explains the difference

between the 2D and 3D results.

The difference in performance of the pressure correction methods appears to be smaller in 3D than

in 2D: SIMPLE, SIMPLEC and SIMPLESSE converged in the same number of iterations. Moreover,

the ef®ciency of the methods (measured by ÿ1= log l) varied by less than 5%, with SIMPLESSE

again having the edge over the others. SIMPLESSEC actually converged fastest in this test as in the

two-dimensional square cavity calculations. This method is, however, not robust with respect to

relaxation factors, as we noted above.

Figure 3. Convergence histories of single-grid and multigrid iterations of lid-driven ¯ow in a cubic cavity. Re � 700,
SIMPLESSE

Figure 2. Convergence factors for different choice of transfer operators. Square cavity, Re � 1000, SIMPLE
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5. CONCLUSIONS

We compared the convergence of a multigrid solver for incompressible ¯ow with four different

pressure correction methods used as smoothers. The number of multigrid iterations needed for

convergence is, for practical purposes, independent of the grid resolution. We have observed some

small dependence in some cases, but the variations are not systematic as we can see from Figures 2

and 3, where we can observe both marginal slow-down and speed-up as the grids are re®ned.

There is little difference between the performance of the methods. In particular, the two established

algorithms, SIMPLE and SIMPLEC, matched each other case-by-case. One of the new variants,

SIMPLESSE, performs in general somewhat better than the two older methods in all the tests, with an

improved ef®ciency of up to 20%. The other novel method, SIMPLESSEC, did shine occasionally for

some combination of geometry, Reynolds number and relaxation parameters, only to lose its lustre in

the next test.

In general, SIMPLE, SIMPLEC and SIMPLESSE are robust with respect to the underrelaxation

factors, in the sense that we found that the optimal relaxation factors were the same in all the tests.

Changing the relaxation factors can, however, have a profound effect on the performance of the

methods. In particular, the momentum equations should not be underrelaxed too heavily.

We also tried to accelerate the convergence of the coarse grid corrections by residual

overweighting. This method gave in some cases a speed-up of about 20% at moderate Reynolds

numbers, increasing to 30% for the highest Re we tested. The method is, however, not robust because

the trigger value Recrit in (17) is problem-dependent. Overweighting can therefore in general not be

recommended as a universally helpful measure.

For the two-dimensional square cavity case with SIMPLE and the ®rst-order upwind discretization

there is a difference between the convergence rate we observed in the experiments and the theoretical

analysis of Shaw and Sivaloganathan.18,19 We believe that this difference may be caused by the

different grid systems employed in our study and in the analysis.

Changing the restriction and prolongation operators had no signi®cant effect on the convergence of

the method. The traditional choice of bilinear prolongation and piecewise constant restriction

performed marginally better than the others.
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Table V. Lid-driven cavity ¯ow, Re � 700.
Multigrid speed-up factors, SIMPLESSE

Cell size 2D 3D

1=32 5�4 5�8
1=48 9�4 10�8
1=64 14�7
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